08-screw-theory-kinematics
rigidbody transformation
旋转运动
根据欧拉定理,任意三维空间旋转运动可以表示为绕某一单位轴$w\in \mathcal{R}^3$转动角度$\theta$,则旋转矩阵可以表示为矩阵指数的形式: angles: $\theta=cos^{-1}(\frac{tr(R)-1}{2})$
rotation angle: $[n]\times=\frac{R-R^T}{2sin(\theta)}$, $n=[-[n]\times(2,3),[n]\times(1,3),-[n]\times(1,2)]$
In unit quaternions(四元数): q=$(cos(\theta/2),\omega sin(\theta/2))$
刚体运动
与旋转相似,根据Chasels定理,任意刚体运动均可以通过绕一轴的运动加上平行于该轴的移动实现:
forward kinematics
- for revolute joint: $\theta_i \in S^1$,unit circle in the plane
- for prismatic joint: $\theta_i \in \mathcal{R}$
- $T^p$ to denote the p-torus, defined to be the Cartesian product of p copies of $S^1$:
- joint space(configuration space) of a manipulator with p revolute joints and r prismatic joints: $Q=T^p \times R^ r$
- the forward kinematics map: $g_{st}$, t-tool frame and s-base frame:
指数积公式
If $\xi$ is a twist, then the rigid motion associated with rotating and translating along the axis of the twist is given by: g: is a pose and also a transformation
The product of exponential formula(POE):
Generalize this procedure:
- Define the reference configuration(初始位置) of the manipulator to be the configuration corresponding to $\theta=0$.
- For each joint, construct a twist $\xi_i$ at $g_{st}(0)$
- $\omega_i \in \mathcal{R}^3$,unit vector in the direction of th twist axis
- $q_i \in \mathcal{R}^3$,any point on the axis(determine the direction)
- $v_i \in \mathcal{R}^3$,unit vector pointing in the direction of translation
- all vectors are specified relative to the base coordinate frame
- 指数积公式只能描述末端关节对基坐标系的变换,而不能得知每个关节相对于坐标系的变换。
inverse kinematics
Paden-Kahan subproblem
Velocity
The instantaneous spatial velocity of the end effector: where $J^s_{st}(\theta)=[(\frac{\partial{g_{st}}}{\partial{\theta_1}}g^{-1}{st}) \dots (\frac{\partial{g)]$ is the }}}{\partial{\theta_n}}g^{-1}_{stspatial manipulator Jacobian.