recsys
    
    
  深度学习在推荐系统中的应用
      
        YeeKal
      
      •
      
      •
      
  
        "#recsys"
      
    Ensemble learning: 混合模型学习, ref1
- Deep&Wide
 - DeepFM
 - XDeepFM
 - AiBox
 - 
DCN: Deep Cross Net, 2019 google
 - 
CF models:
- Based on Neural Collaborative Filtering (NCF) framework:
- NeuMF: Neural Matrix Factorization (He et al, WWW'17)
 - ConvNCF: Outer Product-based NCF (He et al, IJCAI'18)
 
 - Based on Translation framework:
- TransRec: Translation-based Recommendation (He et al, Recsys'17)
 - LRML: Latent Relational Metric Learning (Tay et al, WWW'18)
 
 
 - Based on Neural Collaborative Filtering (NCF) framework:
 - Feature-based models:
- Based on Multi-Layer Perceptron:
- Wide\&Deep (Cheng et al, DLRS'16),
 - Deep Crossing (Shan et al, KDD'16)
 
 - Based on Factorization Machines (FM):
- Neural FM (He and Chua, SIGIR'17),
 - Attentional FM (Xiao et al, IJCAI'17),
 - DeepFM (Guo et al, IJCAl'17)
 
 
 - Based on Multi-Layer Perceptron:
 
2016 wide &deep

two parts: - wide component: a linear model, $y=\mathbf{w}^{T} \mathbf{x}+b$ - deep component: feed-forward neural network, $a^{(l+1)}=f\left(W^{(l)} a^{(l)}+b^{(l)}\right)$
Area Under Receiver Operator Characteristic Curve (AUC)
2016 deepFM

replace linear model with fm model