YeeKal
optimization

锥规划

YeeKal
"#optimization"

Conic Programming

Here: - $c, x \in \mathbb{R}^n$ - $D:\mathbb{R}^n \rightarrow Y $ linear, $d\in Y$ for some Euclidean space $Y$ - $K\subseteq Y$ is a closed convex cone - write $x\preceq_K y$ for $y-x \in K$

锥规划的关注点是指约束条件为锥(相比于其它规划形式)

Second-order cone programming(SOCP)

Second-order cone:

SOCP:

where: $\mathcal{Q} = \mathcal{Q}{n1}\times \cdots \times \mathcal{Q}$

Observations:

  • case $r = 1$ can be solved in closed-from
  • $r\geq 2$ is not so easy
  • $LP\subsetneq SOCP \subsetneq SDP$

Form transform

Second-order cone:

二阶是指二范数,比如对标准锥作仿射变换:

二次约束转化为锥约束: