optimal motion planning
2018 - Optimization-Based Collision Avoidance
introduction
提出轨迹优化中的难点:障碍物碰撞的表达。当前存在的方法不足:
- 降级为线性约束: 2014 - Motion planning with sequential convex optimization and convex collision checking
- 质点模型不切合实际
- 多面体(polyhedral)通常使用整数变量进行表达: 2002 - Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques。
Mixed-integer convex optimization
在非线性实时控制器上并不是一个可接受的选择
本文方法特点:
- 构建凸集(polytope, ellipsoids and so on)
- 对
signed distance
重新整理, 使得least-intrusive trajectorie
成为可能 - 整合了动力学,轨迹可直接在控制器上执行, kinodynamically feasible
相关进展(针对基于优化的避障方法)
- potential field
- point-mass models
- polyhedral obstacles: disjunctive programming, mixed-integer optimization problem
- ellipsoidal obstacles: smooth non-convex constraint
- full-dimensional controlled objects
- keeping all vertices of the controlled object outside the obstacle: 2015-A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed obstacles
- signed distance: 2014 - Motion planning with sequential convex optimization and convex collision checking
- a smooth reformulation of the collision avoidance constraint for point-mass controlled objects and polyhedral obstacles: 2011 Trajectory generation for aircraft avoidance maneuvers using online optimization
problem definition
collision modeling:
- Robot: $\mathbb{E}(x_k) \subset \mathbb{R}^n$, space occupied by the controlled object at time $k$
- Obstacle:
$\mathcal{K}$ is a closed convex pointed cone with non-empty interior, this is entirely generic since any compact convex set admits a conic representation of the form,ref: Convex Analysis, 1970.(虽然这里符号复杂,但其实就是说障碍物可以用一个非齐次线性不等式表示.对于多面体,这时取$\mathcal{K}=\mathbb{R}^l_{+}$,非负象限也是正常锥的一种, 此时$\preceq {\mathcal{K}}b^{(m)} = \leq$. 对于椭圆,可以取$\mathcal{K}=\mathbb{R}^l$为二阶锥。)
for point-mass robot: $\mathbb{E}(x_k)$ degenerate to a point $p_k$
for full-dimensional objects: model as the rotation and translation of the initial convex set $\mathbb{B}\subset \mathbb{R}^n$
collision avoidance for point-mass models
dual problem:
the problem as:
collision free trajectory generation
signed distance: 把碰撞这个bool变量编码成带有碰撞程度的连续函数表达式中,让机器人明白这个障碍物的碰撞能到多大程度,以及走多远之后其碰撞的程度是怎么样的。这样碰撞就变得可微
signed distance
+----------------------------------------+
2 |: : :|
| : : .'|
| : : .' |
| : : .' |
| : : .' |
| : : .' |
| : : .' |
y | : : .' |
| : : .' |
| : : .' |
|''''''''''':'''''''':'''''''':''''''''''|
| '. : .' |
| '. : .' |
| '. : .' |
-1 | '.:.' |
+----------------------------------------+
-2 2
x
Simultaneous path planning and trajectory optimization for robotic manipulators using discrete
mechanics and optimal control
- three stage
- path planning
- trajectory planning: velocity, smooth
- control: torque
- swarm-intelligence based algorithm:
- PSO(Particle Swarm Optimization)
- ACO(Ant Colony OPtimization)
- ABC(Artificial Bee Colony Optimization)
- FA(Firefly Algorithms)
- BA(Bat Algorithm)
-
dp
-
trajectory planning
- trajectory optimization
- optimal trajectory planning
Time-optimal Control of Manipulators: 李群上机械臂的最优控制,路径规划和轨迹优化同时进行