YeeKal
optimal control

optimal motion planning

YeeKal
"#optimal control"

2018 - Optimization-Based Collision Avoidance

introduction

提出轨迹优化中的难点:障碍物碰撞的表达。当前存在的方法不足:

本文方法特点:

  1. 构建凸集(polytope, ellipsoids and so on)
  2. signed distance重新整理, 使得least-intrusive trajectorie成为可能
  3. 整合了动力学,轨迹可直接在控制器上执行, kinodynamically feasible

相关进展(针对基于优化的避障方法)

problem definition

collision modeling:

  • Robot: $\mathbb{E}(x_k) \subset \mathbb{R}^n$, space occupied by the controlled object at time $k$
  • Obstacle:

$\mathcal{K}$ is a closed convex pointed cone with non-empty interior, this is entirely generic since any compact convex set admits a conic representation of the form,ref: Convex Analysis, 1970.(虽然这里符号复杂,但其实就是说障碍物可以用一个非齐次线性不等式表示.对于多面体,这时取$\mathcal{K}=\mathbb{R}^l_{+}$,非负象限也是正常锥的一种, 此时$\preceq {\mathcal{K}}b^{(m)} = \leq$. 对于椭圆,可以取$\mathcal{K}=\mathbb{R}^l$为二阶锥。)

for point-mass robot: $\mathbb{E}(x_k)$ degenerate to a point $p_k$

for full-dimensional objects: model as the rotation and translation of the initial convex set $\mathbb{B}\subset \mathbb{R}^n$

collision avoidance for point-mass models

dual problem:

the problem as:

collision free trajectory generation

signed distance: 把碰撞这个bool变量编码成带有碰撞程度的连续函数表达式中,让机器人明白这个障碍物的碰撞能到多大程度,以及走多远之后其碰撞的程度是怎么样的。这样碰撞就变得可微

                      signed distance              
        +----------------------------------------+ 
      2 |:                   :                  :| 
        | :                  :                 .'| 
        |  :                 :                .' | 
        |   :                :               .'  | 
        |    :               :              .'   | 
        |     :              :             .'    | 
        |      :             :            .'     | 
   y    |       :            :           .'      | 
        |        :           :          .'       | 
        |         :          :         .'        | 
        |''''''''''':'''''''':'''''''':''''''''''| 
        |            '.      :      .'           | 
        |              '.    :    .'             | 
        |                '.  :  .'               | 
     -1 |                  '.:.'                 | 
        +----------------------------------------+ 
         -2                                     2  
                             x                     

Simultaneous path planning and trajectory optimization for robotic manipulators using discrete

mechanics and optimal control

  • three stage
    • path planning
    • trajectory planning: velocity, smooth
    • control: torque
  • swarm-intelligence based algorithm:
    • PSO(Particle Swarm Optimization)
    • ACO(Ant Colony OPtimization)
    • ABC(Artificial Bee Colony Optimization)
    • FA(Firefly Algorithms)
    • BA(Bat Algorithm)
  • dp

  • trajectory planning

  • trajectory optimization
  • optimal trajectory planning

Time-optimal Control of Manipulators: 李群上机械臂的最优控制,路径规划和轨迹优化同时进行

ref