基于最优化的轨迹规划/运动规划
PDE: 偏微分方程(Partial Differential Equation)
最优控制的方法在轨迹优化中主要使用直接法中的配点法。配点法中由于积分和为分的处理又会有梯形积分,simpson等各种积分法的区别。从广义上讲,伪谱法也属于配点法,与上述积分类似,也是通过吧为分和积分通过另一种方式离散化,转化为更容易构造优化方程的形式。
最优控制 VS 轨迹优化:
最优控制 VS 非线性优化
- collocation methods
-
pseudo
-
scaling
optimal control based planning
-
In the view of control: generate feasible control inputs under dynamics constraints
-
In the view of planning: generate dynamically-feasible waypoints (which will be tracked with appropriate control methods)
methods
- explicit methods: convex problem, LQR
- numerical methods: shooting, collocation
- convex
- software: CVX, OSQP
- internal: Gurobi, Sedumi, Mosek
- non-convex
- interior point: IPOPT, SNOPT
- active set methods: SAS
- convex
lqr, mpc
challenge
在考虑动力学的情况下会遇到的挑战:
- obstacle avoidance: 不可导,非凸。
- hybrid mode switch (contact force)
- energy efficiency and smoothness(min jerk, snap)
obstacle avoidance
simple geometric constraints: e.g. $(x-x_{obs})^2+(y-y_{obs})^2\geq r^2$. such constraints are general non-convex.
to make it convex:
- mixed-integer formulation
8Richards and How, “Aircraft trajectory planning with collision avoidance using mixed integer linear programming”.
9Deits and Tedrake, “Footstep planning on uneven terrain with mixed-integer convex optimization”.
10Deits and Tedrake, “Efficient mixed-integer planning for UAVs in cluttered environments”.
- dual variables
1Zhang, Liniger, and Borrelli, “Optimization-based collision avoidance
github: https://github.com/XiaojingGeorgeZhang/OBCA
- chomp/stomp/ Sequential Convex Optimization
2Schulman et al., “Motion planning with sequential convex optimization and convex collision checking”
contact force
Optimization through contact(contact invariant optimization): contact force is zero or distance between contact points should be zero.
application case: manipulation with finger contact, legged robotics
lab: https://homes.cs.washington.edu/~todorov/projects.html
github: https://github.com/robbierolin/Contact-Invariant-Optimization-Project
Contact-Invariant Optimization for Hand Manipulation: https://homes.cs.washington.edu/~zoran/MordatchSCA12.pdf
Discovery of Complex Behaviors through Contact-Invariant Optimization
ref
-
lab
-
blog
-
course
- projects
- paper
- Obstacle avoidance using optimal control theory
- On Motion Planning Using Numerical Optimal Control
- Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization
- 2010- Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
- 1998- A Survey of Numerical Methods for Trajectory Optimization
- 2009 - A survey of numerical methods for optimal control
- ALTRO: A Fast Solver for Constrained Trajectory Optimization
- 2021-Creating Better Collision-Free Trajectory for Robot Motion Planning by Linearly Constrained Quadratic Programming