ml
07_hmm
YeeKal
•
•
"#ml"
Hidden Markov Model
dynamic clustering
生成模式
- generating patterns
- deterministic patterns
- non-deterministic patterns
- 状态量
- pi向量:初始化概率
- 状态转移矩阵
隐藏模式
Markov process
未来状态只依赖于当前状态。
- hidden space
- observed space
- start probability
- transition probabilities
- emission probabilities
three main questions
- evaluation:
- given: an hmm M AND a sequence x
- find: prob(x|M)
- forward
- decoding
- given: an HMM M and a sequence x
- find: the sequence y of states that maximizes the most probable subsequence of states
- Viterbi, forward-backward
- learning
- given: an HMM M with unspecified transition/emission probs, and a sequence x,
- parameters $\theta=(\pi_i,\alpha_{ij},\eta_{ik})$ that maximize $P(x|\Theta)$
- Baum-welch
solutions
forward algorithm
- 穷举搜索(exhausive search for solution)
- 递归(recursive solution)
- 假设上一时间概率已知,则通过哥哥状态的概率相加得出这一时刻的概率
reference