YeeKal
ml

07_hmm

YeeKal
"#ml"

Hidden Markov Model

dynamic clustering

生成模式

  • generating patterns
    • deterministic patterns
    • non-deterministic patterns
      • 状态量
      • pi向量:初始化概率
      • 状态转移矩阵

隐藏模式

Markov process

未来状态只依赖于当前状态。

  • hidden space
  • observed space
  • start probability
  • transition probabilities
  • emission probabilities

three main questions

  • evaluation:
    • given: an hmm M AND a sequence x
    • find: prob(x|M)
    • forward
  • decoding
    • given: an HMM M and a sequence x
    • find: the sequence y of states that maximizes the most probable subsequence of states
    • Viterbi, forward-backward
  • learning
    • given: an HMM M with unspecified transition/emission probs, and a sequence x,
    • parameters $\theta=(\pi_i,\alpha_{ij},\eta_{ik})$ that maximize $P(x|\Theta)$
    • Baum-welch

solutions

forward algorithm

  1. 穷举搜索(exhausive search for solution)
  2. 递归(recursive solution)
    • 假设上一时间概率已知,则通过哥哥状态的概率相加得出这一时刻的概率

reference

  1. 我爱自然语言处理